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Grid turbulence experiments have been carried out in a stably stratified fluid at
moderately large Reynolds numbers (160 based on the Taylor microscale). A scanning
particle image velocimetry technique is used to provide time-resolved velocity fields
in a relatively large volume. For late times, in the low-Froude-number regime, the
flow consists of quasi-horizontal motion in a sea of weak internal gravity waves. Here
the dynamics of the flow is found to be independent of the ambient stratification.
Fundamental differences with two-dimensional turbulence, due to the strong vertical
shearing of horizontal velocity, are observed. In this regime, a self-similar scaling
law for the energy decay and the length-scale evolution is observed. This behaviour
reflects a process of adjustment of the eddy aspect ratio based on a balance between
the horizontal advective motion which tends to vertically decorrelate the flow and the
dissipation due to strong vertical shear. The characteristic vertical size of the eddies
grows according to a diffusion law and is found to be independent of the turbulence
generation. The organization of the flow into horizontal layers of eddies separated by
intense shear leads to a strong anisotropy of the dissipation: this has been checked by
direct measurement of the different tensorial components of the viscous dissipation.

1. Introduction
The dynamical evolution of freely evolving turbulence in the presence of stable

stratification is of great importance to the understanding of atmospheric and oceanic
turbulence. The influence of stable density stratification on initially homogeneous
three-dimensional turbulence has been studied by a number of workers. In one of the
first experiments Dickey & Mellor (1980) dropped a biplane grid through a fluid at
rest, and Britter et al. (1983) dragged a grid through a stratified fluid. They obtained
interesting data concerning the decay rate of the vertical velocity. Britter et al. (1983)
have shown that the main effect of the buoyancy forces is to suppress the vertical
velocity component. Experiments were performed by Stillinger, Helland & Van Atta
(1983) and Itsweire, Helland & Van Atta (1986) in a close loop channel, stratified
with ten layers of salt water, and similar work was done later in a wind tunnel using
stratified heated air by Lienhard & Van Atta (1990) and Yoon & Warhaft (1990).
All these experiments have characterized the initial collapse of the three-dimensional
turbulence, the damping effect of the density stratification on turbulence, and the
statistical properties of the flow at early time.
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As well as experiments, a number of three-dimensional numerical studies of forced
or decaying stratified homogeneous turbulence have been performed, within the
Boussinesq approximation. Riley, Metcalfe & Weissman (1981), Herring & Metais
(1989) and Metais & Herring (1989) have examined the vertical structure and the
distribution of energy between wave and vortical modes. In these works the collapse
of the turbulence under the effect of stratification was found to affect both the
dynamical properties of the flow and its structure. They observed a reduction of
energy transfer and an inhibition of vertical scale growth.

After the collapse of the turbulence, the effect of stratification becomes dominant
and the flow evolves in the low-Froude-number regime. It is this regime in which we
are interested here. In this regime, vertical displacement is inhibited by stratification,
leaving only two possible modes of motion: internal waves and vortices with
horizontal motion. The flow is then characterized by a field of quasi-two-dimensional
vortices undulating in a sea of internal gravity waves (see Riley et al. 1981). Laboratory
experiments on this stage of stratified turbulence (see Hopfinger 1987; Fincham,
Maxworthy & Spedding 1996; Bonnier, Eiff & Bonneton 2000; de Rooij, Linden &
Dalziel 1999) and numerical simulation (see Riley et al. 1981; Herring & Metais
1989; Kimura & Herring 1996) have revealed that these vortices look like ‘pancakes’
with a vertical extent thinner than the horizontal scale. A fine review of this strongly
stratified limit can be found in Riley & Lelong (2000). In such a layered flow, energy
dissipation is associated with the strong vertical shear (see Riley et al. 1981; Herring &
Metais 1989; Metais & Herring 1989; Fincham et al. 1996). This strong vertical shear
is supposed to be responsible for the profound difference observed between two-
dimensional turbulence and the late stages of stratified turbulence. However, the
mechanism of layering is still unclear, and the selection and the evolution of vertical
length scale also remain an open question. Experiments where no vertical scale is
initially imposed (see Park, Whitehead & Gnanadeskian 1994; Fincham et al. 1996;
Billant & Chomaz 2000a) show that layers can spontaneously emerge from two-
dimensional horizontal flow.

In the present paper, we study this low-Froude-number regime at higher Reynolds
numbers than in previous studies, thanks to the large size of the facility. This allows
to get one step closer to the ideal inertial regimes typical of the ocean and the
atmosphere. A Reynolds number of 160 is reached based on the vertical Taylor
microscale (36 000 based on grid mesh and velocity), while the Froude number is
smaller than 0.6. Our parameters are compared in figure 1 with previous studies of
grid-generated turbulence in a stratified fluid.

The main objectives of this work are to characterize the decay of stratified
turbulence and to study the role of coherent structures in this regime. We will
show the profound differences that exist between this quasi-horizontal turbulence and
purely two-dimensional turbulence. The organization of the flow into staggered layers
of quasi-horizontal motion leads to a strong anisotropy of the dissipation process
that will be described and quantified.

The paper is organized as follows. The experimental set-up and procedure are
presented in § 2. A general description of the flow is proposed in § 3, including the
three-dimensional structure, the energy decay and the evolution of the horizontal
and vertical length scales. The spectral analysis of the flow is presented in § 4. In § 5
we consider the contribution of the internal waves to the fluid motion by splitting
the velocity field into its vortical and wave parts. Finally, anisotropy and dissipation
processes are discussed and quantified in § 6.
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Figure 1. Range of Reynolds numbers, ReM , and Froude numbers, FrM , achieved in our
experiments, compared with previous experiments on grid-generated turbulence (ReM and FrM

are based on the grid mesh and velocity).

2. Experimental set-up and procedure
2.1. Experimental apparatus

The experiments were performed in a rectangular tank (8 m × 4 m × 0.9 m). It was
linearly stratified using salt water. The salt stratification is established by means of
computer-controlled volumetric pumps, from two tanks, one filled with salt water and
the other one with pure water. A rake of vertical flat plates of width W and mesh
spacing M (see figure 2) was towed at speed U along the full length of the tank. Two
rakes have been used, with M =22.5 and 45 cm, and the corresponding plate width is
5 and 10 cm respectively. The rake was attached to a carriage above the free surface
and its displacement was driven through a computer-controlled DC motor ensuring
a constant velocity of translation U and good repeatability of the experiments.

The velocity of the rake was increased linearly and at the end of the motion
decreased to zero also linearly. Acceleration and deceleration were chosen to minimize
the generation of internal waves produced by the local compression of the fluid
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Figure 2. Side, top and front views of the experimental set-up.

between the rake and the edges of the closed tank. Plastic mesh baffles were placed
at both ends of the channel to further damp any internal waves produced by the rake
motion. The gap between the sidewalls and the grid was adjusted to be M/2, as this
was found to produce the smallest coherent backflow effect.

With the purpose of investigating the dynamics of stratified turbulence, the flow
is forced two-dimensionally through vertical flat plates which minimizes both the
internal wave generation and the mixing and does not select any particular vertical
length scale. Moreover, plates were chosen instead of rods as they provide a well-
defined separation point that is independent of the Reynolds number. By generating
the turbulence by means of this rake, we introduce a maximum of kinetic energy in
the horizontal modes (modes that result after the collapse of the three-dimensional
turbulence in a stably stratified fluid) while avoiding large dissipation due to three-
dimensional turbulence that would be generated by a classical grid. Thus, even at the
later stages of decay, the stratified turbulence is still energetic.

Stepper motors drove a profiling conductivity probe used to measure the density
gradient in the tank and to verify the linearity of the stratification.

A high-resolution particle imaging velocimetry (PIV) system was used in these
experiments to provide components and the spacial derivatives along the x-, y- and
z-directions of the horizontal velocity in a volume (2.48 m × 2.48 m × 0.5 m). The
measurement volume is centred in the channel to minimize all the boundary effects.
An origin of time t0, based on the rake being located in the centre of the measurement
area, is taken.

Figure 2 shows the experimental facility and the orientation of the measurement
area.

2.2. Particle imaging velocimetry measurement in a volume

In these experiments, the correlation imaging velocimetry technique of Fincham
& Spedding (1997) was used to determine quantitatively the velocity field. More
specifically the scanning correlation imaging velocimetry (SCIV) system of Fincham
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(1998) was used to explore its three-dimensional structure. The fluid was seeded with
600 µm diameter polystyrene beads that were carefully prepared (by a process of
cooking, which decreases slightly the density and successive density separations)
to have a flat distribution of densities matching that of the salt stratification.
This process ensures that there are equal number densities of particles at each
depth. A photographic surfactant (Ilfotol) was added to the working fluid is small
concentrations to prevent the polystyrene beads from agglomerating. The particle
concentration must be sufficient to achieve good SCIV results but an excessive density
leads to a serious damping of laser light. We use a typical concentration of 0.02 particle
per pixel. The corresponding volume concentration is about 10−4 g cm−3 which does
not perturb the flow properties. We can also derive an estimate of the characteristic
time, τs , needed for particles to attain velocity equilibrium with the fluid using Stockes
drag: τs = d2

pρp/18µ, where dp is the diameter and ρp the density of the tracer particles
and µ the dynamic viscosity. Using 600 µm diameter particles, the relaxation time
is about 0.02 s which is much shorter than the characteristic time scale of the flow.
We can therefore consider that the particles passively follow the fluid motion.

Coherent light originating from an 8 W argon laser was passed into an optical fibre
the other end of which was attached to a small optical assembly which directs the
light onto a small oscillating mirror (Cambridge Technology model 6850) creating
a vertical light sheet. This small optical assembly moves horizontally on a linear
bearing traverse. The light sheet then passes through a thin glass plate held parallel
to and just touching the surface of the water above a 45◦ mirror placed in the water.
In this way, horizontal motion of the optical assembly above the water translates
directly into vertical motion of the horizontal laser sheet within the fluid. Due to the
refractive-index variation with depth, an initially horizontal beam of light will tend
to curve downwards parabolically. In order to minimize this, only relatively weak
stratifications were used and the angle of the horizontal light sheet was carefully
inclined upwards a few degrees such that the summit of its parabolic trajectory
corresponded to the centre of the measurement area. In this way the maximum
deviation from horizontal occurs at the edges of the images and is limited to about
5 mm which is close to the light-sheet thickness.

The volume scanning process proceeded as follows: an initial scan through all
depths is made with continuous image acquisition to memory, the light sheet is quickly
returned to the starting position, and after an appropriate time interval the scan
process is repeated to acquire the second image in each pair. The images are acquired
by a 1024 × 1024 pixels 12-bit SMD 1M60 digital progressive scan camera operating
at 60 f.p.s., placed 4 m above the free surface. Each slice (corresponding to a pair
of images) is treated as described by Fincham & Spedding (1997) and Fincham &
Delerce (2000). This correlation imaging velocimetry (CIV) technique is based on
the calculation in physical space of the cross-correlation between local regions in the
two images. The first image is divided into small rectangular boxes and the mean
displacement of a given box is determined from the location of the maximum of the
cross-correlation function. In an iterative way, the deformation of the fluid within
each box is accounted for by locally deforming the images through use of a continuous
function describing the discretely measured pixel intensities. As the true position of
each velocity vector is located midway between the initial and final position of each
pattern box, the velocity field is then reinterpolated onto a rectangular Cartesian
grid using the thin-shell spline routines of Paihua (1978), as described in Spedding &
Rignot (1993). The resulting two-dimensional vector fields are combined into a cube
that is fitted with a three-dimensional fourth-order tensor spline. Spatial derivatives
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along x, y and z are then computed analytically from the coefficients of the spline
tensor. Typical measurement conditions produce 80 × 80 × 50 independent vectors
in a volume of 250 × 250 × 50 cm3. A combination of numerical simulations of the
scanning technique, combined with actual hardware tests using real particles frozen
inside a clear resin block, along with tests on stagnant fluid, showed that under
optimum conditions the measured mean r.m.s. error in velocity is less than 2%.

2.3. Scales and parameters

The relative importance of stratification is indicated by the Froude number,
Fr = u/NL, where u is the r.m.s. turbulence velocity, L a length scale of the energy-
containing motion and N =

√
−g/ρo(∂ρ/∂z) the buoyancy frequency, ∂ρ/∂z is the

ambient density gradient and ρo the mean density. The Froude number is a measure
of the relative importance of the buoyancy effects compared to the inertial forces. In
the early time after the generation of turbulence some patches with relatively large
Froude number are found, suggesting the domination of the inertial effect. However,
as the turbulence decays, the Froude number rapidly decreases as u decreases and L

tends to grow. As time goes on, and turbulence decays further, Fr becomes small and
the flow is completely dominated by stratification.

We define an initial Froude number, FrM , from the mesh size M , the grid velocity
U and the Brunt–Väisälä frequency N , which are the main control parameters:

FrM =
U

NM
.

We similarly define the initial Reynolds number ReM :

ReM =
UM

ν

where ν is the mean kinematic viscosity, i.e. the viscosity of the salt solution at mid-
depth of the tank (viscosity varies by 5.6% with depth for the highest stratification).
For a given stratification, ReM and FrM are related by ReM = FrMNM2/ν so that the
Froude and Reynolds numbers vary together with U .

Experiments were performed for towing speeds U of 0.5, 1, 2, 4, 8 cm s−1 and
density gradients with buoyancy frequencies N of 0.52 and 0.26 rad s−1. Two different
grids were used: M = 45 cm and M = 22.5 cm. The corresponding Reynolds and
Froude numbers are in the range 1125< ReM < 36 000 and 0.02 < FrM < 0.7. Table 1
summarizes the parameters of the different experiments. The Reynolds number based
on the vertical Taylor microscale, Reλ = u∗λ∗

vReM = 0.85 Re1/2
M , is also indicated.

Here the non-dimensional turbulent velocity u∗ and scale λ∗
v are given from the

measurements respectively using (3.1) and (3.6). This Reynolds number slightly
decreases with time, and the data of table 1 are obtained with t∗ ≡ tU/M = 10,
corresponding roughly to the beginning of the well-established turbulent decay.

3. General description
3.1. Global decay of turbulence

Depending on the experimental parameters, two different initial behaviours are
observed. For low towing speeds, a laminar initial wake in which the motion remains
two-dimensional and the vortices are initially columnar is observed. For higher towing
speeds, the flow behind the rake is initially fully turbulent but rapidly collapses under
the effect of stratification.
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Exp U (cm s−1) M (cm) N (rad s−1) ReM FrM Reλ

ba 0.5 45 0.52 2250 0.021 40
bb 1 45 0.52 4500 0.043 57
bc 2 45 0.52 9000 0.086 81
bd 4 45 0.52 18 000 0.17 114
be 8 45 0.52 36 000 0.34 161

aa 0.5 22.5 0.52 1125 0.044 28
ab 1 22.5 0.52 2250 0.09 40
ac 2 22.5 0.52 4500 0.18 57
ad 4 22.5 0.52 9000 0.36 81
ae 8 22.5 0.52 18 000 0.7 114

ia 0.5 45 0.26 2250 0.043 40
ib 1 45 0.26 4500 0.086 57
ic 2 45 0.26 9000 0.17 81
id 4 45 0.26 18 000 0.34 114
ie 8 45 0.26 36 000 0.7 161

Table 1. Parameters for the different experiments performed.

In both cases the final stage consists of quasi-horizontal motion strongly varying
along the vertical. This flow organizes itself into interacting vortices. By pairing and
merging, the typical size of the vortical structures grows until the large vortices scale
like the width of the tank. The photographs (figure 3) show this process of energy
transfer to larger scales and the formation of dominant vortical structures under the
influence of the density stratification, as already noted by Lin & Pao (1979) and
Yap & Van Atta (1993).

This evolution closely resembles two-dimensional turbulence in decoupled hori-
zontal layers. The flow is quasi-horizontal, and the typical size of the structures in-
creases with time. However, the strong vertical shearing between vortices in adjacent
layers gives the flow a highly dissipative nature. Figure 4 shows the decay of the mean
horizontal kinetic energy E. The energy and the time are normalized with U 2 and
M/U respectively. From now on we will use the notation t∗ for the non-dimensional
horizontal advective time: t∗ = tU/M . Using this normalization, the data collapse
fairly well, indicating that the turbulent kinetic energy depends only on the velocity
and the mesh of the rake. This similarity suggests universality of decay, for strong
enough stratification, with very little dependence on the stratification. This result was
also observed in the numerical experiments of Riley et al. (1981) for Froude numbers
smaller than 1.

Figure 4 shows an asymptotic power law of decay

E ≡
〈
u2

x + u2
y

〉/
2 = 〈u2〉 � 0.36 U 2t∗−1.3. (3.1)

The exponent −1.3 is similar to that found for the horizontal kinetic energy in the
very early decay of stratified turbulence by Lienhard & Van Atta (1990), Yoon &
Warhaft (1990) and in numerical simulation by Staquet & Godeferd (1998). It was also
obtained for late times, after the collapse, by Fincham et al. (1996). Surprisingly, this
decay exponent, −1.3, is also similar to that observed for decaying three-dimensional
isotropic homogeneous turbulence. For instance Comte-Bellot & Corrsin (1966) found
a decay exponent of the kinetic energy equal to −1.26, while Warhaft & Lumley (1978)
found −1.34. This contrasts with the dependence of energy dissipation on Reynolds
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(a)

(c) (d )

(b)

Figure 3. Streak photographs of an evolving, grid-generated turbulent flow. Photographs
were taken 74, 137, 205 and 407 s after t0. The grid was towed from right to left. ReM =18 000,
FrM = 0.17.

number in purely two-dimensional turbulence leading to its absence in the limit of
infinite Re.

Because of the internal gravity waves and the instantaneous curvature of the
isopycnals, the motion is not purely horizontal but we can show that the contribution
of the vertical velocity to the total kinetic energy is very weak. The vertical velocity
can be evaluated through the continuity equation, that gives in Fourier space, for
kz 	= 0

ûz(k) =
kh · ûh(k)

kz

. (3.2)

For kz = 0 we arbitrarily choose û2(kx, ky, 0) = 0. This choice consists of removing all
the waves of frequency N or to the assumption that there is no mean vertical motion
in any vertical line. This evaluation gives a good approximation of the contribution
of the vertical velocity to the total energy. Figure 5 compares this vertical energy Ev
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Figure 4. Decay of the normalized mean kinetic energy E, averaged over the volume of the
experiment. Experiments are listed in table 1.

to the horizontal energy, Eh. Clearly, the contribution of Ev is negligible for all the
experiments (less than 1%) and decreases with time (less than 0.02% at the end of
the experiment). The horizontal kinetic energy can thus be considered to be the total
kinetic energy of the flow.

3.2. Laminar initial wake

For low U , immediately after the passage of the rake, a regular von Kármán type of
vortex shedding is observed in the horizontal plane (see figure 6).

Behind each plate of the rake, we observe the formation of columnar vortex pairs,
initially straight and uniform along the vertical. These columnar vortices rapidly
exhibit symmetric sinusoidal deformation as can be seen in figure 7. The shed vortices
decorrelate vertically, eventually producing multiple layers of eddies. The vertically
uniform flow is thus unstable and no straight columnar vortices persist.

The mechanisms of layer formation and the selection of their vertical scale is
still not clearly understood. Spontaneous generation of layers by a so-called zig-zag
instability is proposed by Billant & Chomaz (2000b). A vertical columnar vortex pair
created by a long pair of vertical flaps is sliced into layers of ‘pancake’ dipole by
this instability. The vertical scale selected by this mechanism is the most amplified
wavelength of the instability and is proportional to U/N , the buoyancy length scale.
Flow decorrelation and layering of eddies can also be induced by a weak, vertically
dependent, horizontal velocity as discussed by Majda & Grote (1997). The vertical
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Figure 5. Comparison of the horizontal kinetic energy Eh and the estimated vertical kinetic
energy Ev . ReM = 18 000, FrM = 0.17.

scale is then set by the weak external shear. We observed that imperfections in the
density profile (stronger or weaker stratification) influence the layer positions. In
any case, we shall see in § 3.5 that the vertical scale in the turbulent regime is not
influenced by this initial behaviour.

3.3. Turbulent initial wake

For higher towing speeds, i.e higher Reynolds numbers, ReM =O(104), and higher
Froude numbers, the flow immediately behind the rake is highly three-dimensional, as
shown by direct observation. This active turbulence rapidly collapses, after Nt ∼ 30,
under the effect of stratification as the vertical velocity component is suppressed. It
results in multiple layers of quasi-horizontal vortical structures.

The structures that emerge after the collapse of three-dimensional turbulence are
such that the gradient Richardson number, Ri = N 2/(∂ux/∂z)2, is found to be greater
than the critical value for stability: Ric = 1/4. So no overturning instability is expected
and the fluid remains stable with respect to the vertical shear as the Richardson
number continues to increase with time. Figure 8 shows the probability distribution
function of the vertical turbulent Froude number Frv = (∂ux/∂z)/N for different times.
The vertical Froude number is directly related to the Richardson number by Fr−2

v = Ri
so the critical Richardson number correspond to a critical value of Frv equal to 2.
It appears that by the time of our first measurement Frv does not exceed the critical
value, so the vertical shear is not strong enough to produce overturning. At early
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Figure 6. Initial wake. Isolines of the vertical component of vorticity observed in an horizontal
plane. ωz(x, y). �ωz =0.02 s−1. The axes are in cm. The negative vertical vorticity is shaded
grey. The grid was towed from right to left. ReM = 2550, FrM = 0.02, t = 280 s.

times, before the start of the measurements, Kelvin–Helmholtz-type roll-up is evident,
as seen in figure 6 of Fincham et al. (1996), which corresponds to Nt ∼ 10.

The Gaussian-like shape of the distribution of the vertical gradient indicates that
there is no tendency for the flows to develop strong vertical gradients in small
spatial regions. We do not observe any intermittency of the horizontal vorticity field.
Similar observations of a Gaussian-like distribution of vertical shear in strongly
stratified turbulence (after the collapse) were also made in numerical simulations of
freely evolving stratified turbulence by Metais & Herring (1989) and forced stratified
turbulence by Herring & Metais (1989).

3.4. Fully established stratified turbulence

In all cases, laminar or turbulent initial wake, the final stage of the flow is characterized
by quasi-horizontal motion, organized into horizontal layers (see figures 9 and 10).

As seen in figure 9 the flow contains patches of vertical vorticity localized in
space and bounded by horizontal vortex sheets. These horizontal vortex sheets are
associated with the strong vertical shear of the quasi-horizontal motion (see figure 10).
The horizontal r.m.s. vorticity 〈ω2

h〉1/2 contained in these thin sheets is much stronger
than the vertical r.m.s. vorticity 〈ω2

z〉1/2 of the larger horizontal structures themselves,
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Figure 7. Initial three-dimensional instability of the laminar wake represented in terms of
isosurfaces of the vertical component of vorticity ωz(x, y, z). The positive vertical vorticity
is in dark grey and negative in light grey. The vertical dimension is magnified four times
with respect to the horizontal. The grid was towed from right to left. ReM = 2550, FrM = 0.02,
t = 280 s.

as can be seen in figure 11. This plot of the contribution of the three components
of the vorticity (ωx, ωy, ωz) to the total enstrophy Ω = 1

2
〈ω2〉 shows clearly that

the horizontal vorticity contributes more than 95% to the total enstrophy, and
this contribution increases with Reynolds number, consistent with the findings of
Fincham et al. (1996). The strongly sheared regions are highly dissipative and the
energy contained in the pancake eddies is expected to be dissipated primarily in the
thin vortex sheets present at their edges.

3.5. Length scale evolution

To elucidate the results on energy decay and the structure of the flow, we describe
here the evolution of the length scales. We first measure the integral length scales.
The horizontal integral scale Lh is obtained from the longitudinal auto-correlation
function of the horizontal velocity by integrating up to its first zero. For the vertical
integral scale, we perform the same analysis on the vertical auto-correlation function
of the horizontal velocity (it is therefore a transverse auto-correlation function). The
horizontal velocity is indeed the dominant component.

Alternatively, the Taylor microscale provides “a measure of the average dimension
of the eddies that are mainly responsible for dissipation” (Hinze 1975). It is obtained
from the auto-correlation function of the velocity, as the point where the osculation
parabola at the origin meets the horizontal axis. Like for the integral scales, we shall
determine the horizontal Taylor microscale, λh, using the longitudinal auto-correlation
function, and the vertical one, λv , using the transverse auto-correlation function of the
horizontal velocity. Note that for isotropic turbulence, the longitudinal and transverse
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auto-correlations function coincide at the origin so that they yield the same Taylor
microscale.

3.5.1. Horizontal scales

Figure 12 shows the evolution of Lh with time for various experiments. The Brunt–
Väisälä frequency for experiments ba, bb, bc, bd and be is N = 0.52 s−1 while N =
0.26 s−1 for experiments ia, ib and id. Figure 12 shows that the typical size of
the energy-containing eddies grows with time as previously observed (see figure 3).
The collapse of the curve is not very good but no obvious dependence of Lh on
stratification can be seen. A fit

Lh/M � 0.25t∗0.5 (3.3)

can be proposed. For late times, the increase of Lh slows down, and this is probably
due to confinement by the channel width.

Figure 13 shows the evolution of the horizontal Taylor microscale λh, for various
experiments. It grows with time, approximately as a power law t0.37. The collapse
of the curves indicates that λh does not depend on the initial condition or on the
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Figure 9. Three-dimensional structure of the vertical vorticity. The dark regions represent
blobs of positive ωz while the white regions represent blobs of negative ωz. The vertical
dimension is magnified three times. ReM = 9000, FrM = 0.09, N = 0.52, t = 700 s.
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Figure 10. Isolines of the transverse velocity u(y, z) in a vertical slice. The negative part of
u(y, z) is represented in grey and the positive part in white. The vertical dimension is magnified
three times and the axes are in cm. ReM = 9000, FrM = 0.09, N =0.52 t = 700 s.

stratification. For very late times, the plot becomes scattered however, and this is
probably due to the poor statistics obtained when few eddies remain in the view field.

The r.m.s. of the vertical vorticity can be related to the horizontal Taylor microscale
λh and the kinetic energy 〈u2〉 through the relation:

λ2
h =

〈u2〉〈
ω2

z

〉 . (3.4)
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Figure 11. Contribution of the three components (ωx, ωy, ωz) of the vorticity to the total
enstrophy Ω . ReM =18 000, FrM =0.17, N = 0.52.

We have shown that 〈u2〉 ∼ t−1.3 and λh ∼ t0.37. Moreover both are independent of
the initial conditions and in particular of stratification. Therefore 〈ω2

z〉 should also
be independent of stratification and behave like t−2. The good agreement with this
prediction is shown in figure 14 where the evolution of the normalized vertical vorticity
is plotted against the advective time. The collapse is fairly good and confirms the
predicted behaviour.

3.5.2. Vertical scales

Figure 15 shows the evolution of the vertical integral scale. Lv grows monotonically
with time as the vertical extent of the structures increases by viscosity. In some cases,
for early times a decrease of Lv is observed. This phenomenon is associated with the
loss of coherence of the columnar vortices observed in the laminar initial wake just
behind the rake, as mentioned in § 3.4. An interesting fact is that in these cases, Lv

first decreases and then starts to increase following exactly the same law (independent
of the initial conditions) as the other experiments. This observation suggests a process
of adjustment of the vertical size of the pancakes by the turbulent dynamics: the
horizontal advection tends to break the columnar vortices while viscous diffusion
continually increases the vertical scale.
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Figure 12. Evolution of the horizontal integral length scale, Lh. Experiments are listed
in table 1.

The law Lv � 2
√

νt suggests that the vertical scale is controlled by viscosity and
evolves following a diffusive process. In particular, no dependence on U/N is found
in the turbulent regime. Billant & Chomaz (2000b) argue that the layering scale in
the fully turbulent regime should be the same as the most amplified wavelength of the
zig-zag instability and thus be proportional to the buoyancy scale U/N . The results
of the present set of experiments do not confirm this. In their experiments the dipolar
vortices generated by the breakdown of the columnar dipole are free to evolve without
horizontal interactions in the quiescent ambient fluid. In our experiments each vortex
column immediately feels the presence of the neighbouring columns and any preferred
wavelengths will have to compete with the vertical shearing induced by the flow
field.

The aspect ratio of the structures, based on the ratio of the integral scales, α = Lv/Lh

ranges between 0.05 and 0.4. These low values of α are consistent with previous
observations of pancake eddies. For example, Bonnier et al. (2000) measure α ∼ 0.4,
Fincham et al. (1996) α ∼ 0.3, and for the vortex dipole, Voropayev, Afanasyez & van
Heijst (1995) find α ∼ 0.4 whereas Flor, van Heijst & Delfos (1995) find α ∼ 0.3.
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Figure 13. Evolution of the horizontal Taylor microscale λh. Experiments are listed
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The vertical Taylor microscale is plotted in figure 16 in both dimensionless and
physical units. We note that this scale approximately follows a law

λv � 2
√

νt, (3.5)

so that Lv � λv: most of the energy is at the Taylor microscale. Like the corresponding
integral scale, the vertical Taylor microscale is not significantly influenced by the initial
condition (mesh size), the velocity of the rake or the stratification. It is entirely set by
viscosity. Accordingly the non-dimensional result,

λ∗
v � 2.t∗1/2Re−1/2

M (3.6)

does not collapse onto a single curve (figure 16a): it depends on the Reynolds number.
This result for the vertical Taylor microscale can be explained by relating it to the

energy dissipation. Indeed this scale is theoretically related to vertical gradient of the
horizontal velocity 〈(∂ux/∂z)2〉 by

λ2
v =

〈u2〉
〈(∂ux/∂z)2〉 . (3.7)

The agreement between this determination of λv and its determination from the
vertical correlation function has been checked and the deviation is found to be less
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Figure 14. Decay of 〈ω2
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than 5%. Assuming that the energy dissipation is entirely due to the vertical velocity
gradients, the dissipation rate of kinetic energy ε can be approximated, following
Fincham et al. (1996), as

ε � 2ν

〈(
∂ux

∂z

)2〉
(3.8)

(horizontal isotropy is assumed). A more precise justification will be given in § 6.
Using (3.7) and (3.8), we obtain

λ2
v = 2ν

〈u2〉
ε

(3.9)

if energy is lost only to viscous dissipation. Since 〈u2〉 ∼ t−1.3 and ε = −d〈u2〉/dt =
−1.3 〈u2〉t−1, we have λv � 1.25

√
νt , close to the measured result (3.5).

We can evaluate the anisotropy of the flow based on the ratio of the vertical to the
horizontal Taylor microscales. We have shown that λ∗

h ∼ t∗0.37 and is independent of

the Reynolds and Froude numbers, while λ∗
v ∼ Re−1/2

M t∗1/2. Therefore

λ2
v

λ2
h

∼ Re−1
M t∗0.26 or

〈ωz
2〉

〈ωh
2〉 ∼ Re−1

M t∗0.26. (3.10)
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The aspect ratio based on the Taylor microscale does not depend on the stratification
and grows slowly with time (as t0.13).

4. Spectral analysis
4.1. Horizontal spectra

The two-dimensional horizontal energy spectrum is calculated as a function of the
horizontal wavenumber kh = (k2

x +k2
y)

1/2. A two-dimensional fast Fourier transform of
the horizontal velocity field is performed in each horizontal plane of the measurement
volume. Then a circumferential average at radius kh is taken to obtain the two-
dimensional energy spectrum in each plane E(kh, z). Finally all of these horizontal
spectra are averaged over the vertical coordinate to obtain the two-dimensional
horizontal energy spectrum E(kh) = 〈E(kh)〉z. Figure 17 shows the horizontal energy
spectra as a function of the horizontal wavenumber at different stages of the
experiment. As soon as the flow becomes quasi-horizontal and for the duration
of the experiment, the energy remains confined to the large scales. The slope in the
high-wavenumber region is not constant and decreases with time from about 3.8 to
2. In all the experiments we observe a convergence to this slope of approximately 2.
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The effect of the experimental parameters FrM and ReM is shown in figure 18
where the two-dimensional energy spectra for various experiments at the same
advective time t∗ ∼ 20 are plotted. As expected, the level of the spectra increases with
U as the flow is more energetic at all scales, but the remarkable fact is that very little
dependence of the horizontal energy spectra on the stratification is seen at all measured
scales.

Figure 19 shows, at two different times (t∗ = 20 and 80), the horizontal energy
spectra normalized with U 2 versus the horizontal wavenumber normalized with M−1.
In all cases, the spectra collapse relatively well onto a single curve. This similarity,
obtained at all scales in the inertial range, indicates clearly that the dynamics of
the quasi-horizontal motion does not depend on the stratification or the Reynolds
number. Moreover, the slope of the spectra, as already observed in figure 17, decreases
with time and seems to converge toward a −2 slope. Different theoretical models
predict such k−2

h spectra, for instance Herring (1988) and Yeung & Zhou (1998) in an
equivalent rotating turbulence problem. They are obtained as well in weakly interactive
wave theories (Staquet & Sommeria 2002). However, all these models predict a
dependence of the spectral energy on the stratification N unlike what is observed
in our experiments.
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4.2. Vertical spectra

Figure 20 shows the vertical spectra of kinetic energy for different experiments (ba,
bb, bd, ia, ib, id) at t∗ ∼ 30. Like the horizontal energy spectra, the vertical spectra,
at almost all scales, are not affected by stratification.

Figure 21 shows the result of scaling the vertical spectra of kinetic energy with the
Kolmogorov scale. The vertical wavenumber is normalized with η = (ε/ν3)1/4 and the
energy with ν2η. The measurement of ε is described in § 6. The curves in figure 21
are a subset of the entire range of t∗ of experiment bd. The collapse of the scaled
spectra is surprisingly good over most of the wavenumber range and also for the
low-wavenumber region. This similarity of the spectra with time was not observed
in the horizontal spectra where the slope was decreasing with time. The slope of
these vertical spectra remains constant with time and close to −3. It must be noted
that these k−3

z spectra are not associated with a saturation of internal waves as
the energetic contribution of the waves is very weak. E(kz) definitely represents the
vertical spectra associated with the vortical velocity field. The Kolmogorov scaling is
not only successful for time evolution but also over the range of stratification and
initial Reynolds numbers. Figure 22 shows the vertical energy spectra, normalized by
the Kolmogorov scales, for various experiments (ba, bb, bc, bd, ia, ib, id), at t∗ = 40.
With this scaling the collapse of all the spectra is once again surprisingly good over
most of the wavenumber range. The deviation observed at the largest wavenumbers
is partially due to the noise introduced by the PIV measurement, which depends on
the physical scale of the motion.

This similarity and the constant k−3
z slope observed for the vertical spectra of kinetic

energy confirm that the flow cannot be considered as a superposition of completely
independent layers of two-dimensional turbulence. If this were the case, the vertical
spectra would tend to resemble a white noise spectrum.

In addition, as the vertical shearing is responsible for most of the dissipation, we
can estimate the dissipation spectrum from the vertical spectrum:

ε(kz) = k2
zE(kz). (4.1)
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The dissipation associated with each scale kz is then given by integration of ε(kz) from
kz to 2kz. The k−3

z slope of the vertical spectra leads thus to a k−1
z dissipation spectra

without a distinguishable preferential dissipation scale. All length scales contribute
almost equally to the dissipation of turbulent kinetic energy.

5. Wave–vortex analysis
In the late stages of freely decaying turbulence in strong stratification Frh � 1 and

the curvature of the isopycnes is small. In this limit, we can quantify the relative
importance of the internal waves by using the following decomposition of the velocity
field:

ûi = φ̂1e1
i + φ̂2e2

i (5.1)

where the unit vectors e1 and e2 are defined as follows. Since u is perpendicular to k
because of the continuity equation (∇ · u =0), a local frame of reference is defined in
Fourier space, made up of the wavevector k and of two unit vectors lying in a plane
Π perpendicular to k. One of the two vectors, e1(k), is taken horizontally; e2(k) lies
along the intersection of Π and a vertical plane. The last vector e3(k) completes the
frame. This frame is usually referenced as the Craya–Herring frame (Craya 1958). It
was also proposed by Chandrasekar (1961) who introduced the equivalent poloidal,
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Figure 21. Vertical spectra of kinetic energy non-dimensionalized by the Kolmogorov scale
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toroidal decomposition. The units vectors are then defined by

e1(k) = (k × n)/|k × n|, (5.2)

e2(k) = (k × e1)/|k × e1|, (5.3)

e3(k) = k/k, (5.4)

where n is the vertical unit vector.
This decomposition can also be formulated in physical space. Splitting the velo-

city vector u into its horizontal and vertical parts and applying the Helmholtz decom-
position to the former components leads to

u = ∇h × ψn + uh + ∇hζ + uzn (5.5)

where ∇h represents the gradient operator in a horizontal plane and uh the vertically
sheared horizontal flows (VSHF) associated with the modes with kh = (k2

x + k2
y)

1/2 = 0.
It can be easily shown that, for an incompressible flow, the Fourier transforms of ψ

and ζ , respectively ψ̂ and ζ̂ , are related to φ̂1 and φ̂2 by the relations

φ̂1 = ikhψ̂, φ̂2 = i
khk

kz

ζ̂ . (5.6)



Decaying grid turbulence in a strongly stratified fluid 25

103

102

101

100

10–1

10–2 10–1 100

–3.0

ReM = 2250, FrM = 0.02

2250, 0.04

4500, 0.04

4500, 0.09

9000, 0.09

18000, 0.17

18000, 0.34

E
(k

z)
 / 

(ν
2 η

)

kz/η

Figure 22. Vertical spectra of kinetic energy non-dimensionalized by the Kolmogorov scale
at t∗ =40 for different experiments.

Riley et al. (1981) shown that for a stably stratified fluid, in the linear limit ∇h × ψn
defines the non-propagating or vortex part of the flow which contains all vertical
vorticity while the two last terms of (5.5) define the wave part and contain all of
the vertical velocity. The VSHF modes are divergent free, do not contain vertical
vorticity and have kinetic energy only.

In our study only the horizontal components of the velocity fields are measured.
We thus take the horizontal part of (5.5). The corresponding scalars ψ and ζ are
uniquely determined by taking respectively the curl and the horizontal divergence of
uh leading to

−ωz = ∇2ψ, (5.7)

∇h · uh = ∇2
hζ, (5.8)

where ∇2
h denotes the Laplacian operator in a horizontal plane.

By solving numerically these two Poisson equations (5.7) and (5.8) we separate the
horizontal flow into its vortical and horizontal wave parts. The vortex part of the flow
is purely horizontal while the wave part contains all the vertical velocity. As the VSHF
modes contain horizontal kinetic energy and may be associated with vortical structures
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triangles). ReM = 9000, FrM = 0.08, N = 0.52.

much larger than the measurement area, they are included in the vortical part of our
decomposition.

The total kinetic energy, its vortical and wave contributions and the vertical kinetic
energy are plotted versus time in figure 23. The first measurement was made for
Nt ∼ 100. At this time the waves generated during the collapse of the initial turbulent
patches have already been radiated away. Therefore, only the wave field directly
associated with the low-Froude-number turbulence remains. These curves show the
small contribution of the waves to the horizontal kinetic energy (10% at Nt ∼ 100
in this case). The decay rate of the wave part is also faster than the vortex part,
indicating that the energetic domination of the vortex mode increases with time.

This relative contribution of the wave part is directly related to the importance of
stratification. Figure 24 shows how this ratio increases with the Froude number FrM

(at a fixed time Nt ∼ 125). The contribution of the wave part increases with FrM but
in all cases this contribution remains weak and, as just discussed, decreases with time.

The wave kinetic energy can itself be decomposed into a contribution of the
horizontal and vertical velocity components (figure 23), and the latter contribution
is small (less than 10%). Accordingly, the wave field is dominated by wavevectors
k close to the vertical, kz 
 kh. Their frequency ω, given by the dispersion relation
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ω2 = N 2k2
h(k

2
h + k2

z)
−1, is therefore much smaller than N . We can estimate that this

is close to the advective frequency u/Lh =N/Fr � N , allowing strong interactions
between the vortical and wave modes.

6. Mechanisms of energy dissipation
6.1. Anisotropy of the dissipation

The organization of the flow into layers of eddies separated by intense and highly
dissipative sheets of horizontal vorticity leads to a strong anisotropy of the dissipation:
the vertical shear of the horizontal velocity components dominates. We here analyse
in more detail the contributions of the different shear directions to energy dissipation.

The dissipation rate of the turbulent kinetic energy E = 1
2
(u2

1 + u2
2 + u2

3) is given
locally by

ε = 2ν〈sij sij 〉 (6.1)

where

sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
, i, j = 1, 2, 3. (6.2)

As the three-dimensional SCIV technique provides the horizontal components of the
velocity field in a volume, all components of the deformation tensor sij are measured
except the horizontal derivatives of the vertical velocity. The vertical derivative of the
vertical velocity is estimated from the continuity equation.

Following the analysis of Fincham et al. (1996), the dissipation owing to gradients
in a plane normal to the unit vector ek is given by

εk = 2ν〈sij sij 〉, i, j 	= k. (6.3)
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Figure 25. Contributions of εx , εy , εz, to the total dissipation of horizontal kinetic energy.
ReM = 9000, FrM = 0.09.

The contribution of the derivatives in the three directions (x, y, z) ≡ (x1, x2, x3) of the
velocity components (ux, uy, uz) ≡ (u1, u2, u3) are given by

εx = ν

〈
2

(
∂uy

∂y

)2

+ 2

(
∂uz

∂z

)2

+

(
∂uz

∂y

)2

+

(
∂uy

∂z

)2

+ 2

(
∂uy

∂z

∂uz

∂y

)〉
, (6.4)

εy = ν

〈
2

(
∂ux

∂x

)2

+ 2

(
∂uz

∂z

)2

+

(
∂uz

∂x

)2

+

(
∂ux

∂z

)2

+ 2

(
∂ux

∂z

∂uz

∂x

)〉
, (6.5)

εz = ν

〈
2

(
∂uy

∂y

)2

+ 2

(
∂ux

∂x

)2

+

(
∂ux

∂y

)2

+

(
∂uy

∂x

)2

+ 2

(
∂uy

∂x

∂ux

∂y

)〉
. (6.6)

The total turbulent viscous dissipation can then be written as

ε = εx + εy + εz − 2ν

〈(
∂ux

∂x

)2

+

(
∂uy

∂y

)2

+

(
∂uz

∂z

)2〉
. (6.7)

We neglect in these formula the unmeasured contributions of ∂uz/∂x and ∂uz/∂y,
which involve the weak uz component combined with weak derivatives in the
horizontal directions. The vertical derivative of uz is obtained from the continuity
equation ∂uz/∂z = −∂ux/∂x−∂uy/∂y.

In figure 25, we examine the contribution of εx , εy and εz to the total dissipation. The
isotropy of the flow in the horizontal direction is satisfied as the contributions of εx and
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Figure 26. Evolution of the dissipation rate of horizontal kinetic energy, estimated from
−dE/dt (black squares) and from 2νsij sij (open circles). ReM = 4500, FrM = 0.04.

εy remain the same in time while a strong anisotropy between vertical and horizontal
directions is evident. It is seen clearly that the dissipation is dominated by the
vertical gradients which contribute, in this case, more than 90%. The vertical shearing
dominates the dissipation and is responsible for the quasi-totality of the energy decay.
Therefore, assuming horizontal isotropy, ε can be estimated by ε � 2εy = 2ν〈(∂ux/∂z)2〉
confirming our previous estimate (3.8).

6.2. The viscous dissipation rate

The reliability of the estimation of ε through (6.1) where the contributions of ∂uz/∂x

and ∂uz/∂y are not taken into account, is shown in figure 26. The very good
agreement between the evaluation from the time derivative of the turbulent kinetic
energy −dE/dt and from 2νsij sij shows that the measurement technique permits an
accurate resolution of the dissipation scales. This agreement also confirms the weak
contribution of the derivative of the vertical velocity to the dissipation. There is also a
possible exchange between kinetic and potential energies, and potential energy dissip-
ation by salt diffusion. The latter effects are also negligible in the low-Froude-number
regime because of the weak internal wave component and the low salt diffusivity.

The dissipation rate of kinetic energy for different experiments is plotted versus
time in figure 27. All the curves collapse well when ε is normalized by U 3/M , to the
law ε∗ � 0.5t∗−2.3. This is again in good agreement with the law for dE/dt obtained
from the measured energy (3.1).
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Figure 27. Decay of the normalized dissipation rate of the kinetic energy. Experiments are
listed in table 1.

As previously observed, the decay law is the same as in the isotropic homogeneous
case, although the turbulence is here highly anisotropic. Moreover, the rate of energy
dissipation satisfies the usual Kolmogorov estimate ε ∼ u3/Lh, with the horizontal
integral scale Lh. Indeed from (3.1) and (3.3), we obtain

ε � cu3/Lh with c = 0.6t∗−0.15, (6.8)

which is nearly constant. It is about half the corresponding value in isotropic
turbulence, which means that the energy transfer process is about half as efficient as in
the usual Kolmogorov cascade. We can alternatively estimate u/Lh from the vertical
vorticity 〈ω2

z〉, shown in figure 14. It yields u/Lh ∼ t∗−1, so that (dE/dt)/E ∼ −u/Lh.
This result suggests that the dynamics is controlled by the horizontal advection, which
tends to decorrelate the layers. This energy transfer from horizontal to vertical wave
vectors is balanced by viscous dissipation due to the resulting vertical shear.

7. Conclusion
Decaying stratified grid-generated turbulence has been investigated using a scanning

particle image velocimetry technique providing time-resolved velocity fields in a
volume. We considered the regime of quasi-horizontal motion obtained after the
collapse of the three-dimensional stratified turbulence.
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In this regime, we observe the evolution of the flow into a layered field with strong
vertical shear. The generation of such horizontal layers shows good agreement with
the results obtained in the numerical simulations of Herring & Metais (1989) or in the
experiments of Fincham et al. (1996). We find the layering scale to be independent of
the stratification and in particular it does not exhibit any proportionality with U/N .

While the horizontal motion dominates, the vertical shear leads to strong energy
dissipation and prevents stratified turbulence from exhibiting the characteristics of
two-dimensional turbulence. This anisotropy of the dissipation process was quantified
using a direct measurement of the relative contribution of all the gradients to the
dissipation rate. Vertical shearing appears to be responsible for the quasi-totality of
the energy decay, increasingly so for higher Reynolds numbers.

The present set of experiments demonstrates some important properties of decaying
stratified turbulence, once the quasi horizontal motion regime is established. We found
in this regime a self-similar temporal evolution of the energy decay and of the length
scales. The kinetic energy decay, remarkably, exhibits the same scaling form as three-
dimensional isotropic homogeneous turbulence with a scaling exponent close to −1.3,
even though the energy dissipation mechanisms are radically different. This value
is also close to the one found in the early stage (before the collapse) of decaying
stratified turbulence. The scaling law obtained for the evolution of the vertical scale,
Re−0.5

M t∗0.5, is consistent with the model of viscous growth proposed in this paper.
Moreover, very little influence of the initial conditions and in particular of the

stratification was observed in either the dynamics or the measured values of the kinetic
energy and the horizontal and vertical length scales. Our results can therefore be
considered as general properties of stratified turbulence independent of the generation
mechanism. Furthermore, as pointed out by Riley et al. (1981), whatever the initial
Froude number, the turbulence is completely dominated by stratification after a few
Brunt–Väisälä periods. Stratification plays a role in the early stages of the turbulence
evolution by inhibiting the vertical fluxes and provoking its collapse. But, after the
collapse, with the establishment of the quasi-horizontal motion, the dynamics of the
flow is no longer controlled by stratification and does not depend on it. In this regime
(Fr � 1) a self-similarity in the limit of Fr → 0 is suggested by the experiments.

Nevertheless, the dynamics of the turbulence cannot be represented by completely
independent quasi-horizontal flows. Indeed, we showed that the layers are strongly
coupled by viscosity. A balance between horizontal advection, which tends to vertically
decorrelate the flow, and vertical diffusion is observed. The basic dynamics of energy
decay is therefore a transfer from large horizontal to smaller vertical scales, where
viscous dissipation takes place. As a consequence of this viscous coupling, the vertical
scales are found to be governed by viscosity and to grow according to a diffusive
process that is not influenced by their initial behaviour. Note that all the vertical
scales contribute equally to this dissipation because of the k−3

z energy spectrum.
Extrapolating these results to very high Reynolds numbers, we find that the vertical

shear scales as ωh ∼ Re0.5. For high Re, the condition for low gradient Richardson
number Ri =N 2/ω2

h ∼ N 2Re−1 will clearly be reached, leading to local shear instability.
This will lead to the generation of small-scale turbulence that could act as an eddy
diffusivity for the larger scales, so our results could apply with a Reynolds number
based on this eddy diffusivity. In particular the scaling laws for the velocity and length
scales will be the same. It is expected that this high-Reynolds-number case would not
be easily realized in freely decaying laboratory experiments, as the three dimensional
process of turbulent collapse used to generate the pancake vortices dissipates sufficient
energy to leave the resulting quasi-horizontal flow in the stable regime. It should be
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possible in a forced experiment to maintain a sufficiently large Reynolds number to
find zones with Richardson numbers smaller than 1/4.

These laboratory experiments would not have been possible without the support of
Dr Henri Didelle and Mr Rene Carcel.
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